1)Find all prime ideals. and maximall ideals of $Z_{6}, Z_{2} \times Z_{4}$
2) Find all $c \in Z_{3}$ such that $Z_{3}[X] /\left\langle x^{2}+c\right\rangle$ is a field.
3) show that N is a maximal ideal in a ring if and only if R / N is a simple ring .
4) let A and B be ideals of a commutative ring R. the quotient $A: B$ of A by B is defined by $A: B=\{r \in R: r b \in A$ for all $b \in B\}$
show that $A: B$ is an ideal of R.
5) Find all zero divisors, and a nonzero, idempotent and units, nilpotent element in $Z_{3} \oplus Z_{6}$.
6) suppose that a and b belong to a commutitve ring . and $a b$ is a zero divisor. Show that either a orb is a zero divisor
7) Prove that $I=\langle 2+2 i\rangle$ is not a prime ideal of $Z[i] / I$? what is the characteristic of $Z[i] / I$?
8) show that $Z_{3}[x] /\left\langle x^{2}+x+1\right\rangle$ is not a field .
9) Prove that M is a maximal ideal in a ring R if and only if $\forall x \notin M \exists$ $r \in R$ such $1+r x \in M$.

